Abstract Submitted for the DPP09 Meeting of The American Physical Society

Sorting Category: 1.2.6 (Experimental)

Constraints on an empirical flux equation for asymmetry-induced transport¹ D. L. EGGLESTON, Occidental College — Despite a large body of experimental work on asymmetryinduced transport, the correct theory remains elusive. We are currently developing an empirical model of the transport with an eye toward providing guidance for further theoretical development. In previous work² we have shown that the flux equation for the transport is empirically constrained to be of the form $\Gamma(\epsilon) = -(B_0/B)^{1.33}D(\epsilon)[\nabla n_0 + f(\epsilon)],$ where $\epsilon = \omega - l\omega_R$, ω is the asymmetry frequency, ω_R the plasma rotation frequency, l the azimuthal mode number, B the magnetic field, n_0 the density, B_0 an empirical constant, and $D(\epsilon)$ and $f(\epsilon)$ are unknown functions. To gain information about $D(\epsilon)$ and $f(\epsilon)$, we have examined data near the $\epsilon = 0$ point and compared it to a first order expansion of $\Gamma(\epsilon)$. This analysis shows that $dD/d\epsilon(0) \neq 0$, in contradiction to resonant particle theory³. We also find that $f(\epsilon)$ can only be a fraction of the size predicted by that theory, and that $dD/d\epsilon(0)$ is an increasing function of radius and scales with the inverse of the center wire bias. This last result suggests that ϵ may be scaled by ω_R rather than the axial bounce frequency.

Prefer Oral Session

Refer Poster Session

Dennis L. Eggleston eggleston@oxy.edu Occidental College

Date submitted: July 16, 2009

Electronic form version 1.4

 $^{^1\}mathrm{Supported}$ by DOE grant DE-FG02-06ER54882

²D. L. Eggleston and J. M. Williams, Phys. Plasmas 15, 032305 (2008).

³D. L. Eggleston and T. M. O'Neil, Phys. Plasmas 6, 2699 (1999).